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A Semiempirical Formula to Estimate Valence Force Constants

A semiempirical formula to estimate valence force constants is derived. Using CNDO data, 
it is possible to get much better results than from empirical rules. The application of a simple 
point charge model allows a discussion of chemical binding.

I. Einleitung

Seit alters her ist der Begriff der chemischen 

Bindung mit einem gewissen Modell verbunden. 

Exakte Betrachtungen der chemischen Bindung [1] 

im Sinne der Quantenmechanik sind zu unhandlich 

und erlauben keine einfache Interpretation mole­

kularer Phänomene. Strebt man Aussagen bezüg­

lich der „Stärke einer Bindung“ an, so muß man 

sich zuerst im klaren sein, worauf man diese Stärke 

bezieht. Ein sehr brauchbares Modell, vor allem im 

Zusammenhang mit den schwingungsspektroskopi­

schen Methoden, ist das Federmodell der chemischen 

Bindung. Die Vorstellung, die schwingenden Atome 

seien durch masselose Federn verbunden, läßt eine 

Interpretation der Stärke einer Bindung als Steif­

heit dieser Feder zu. Diese Steifheit, meist als Va­

lenzkraftkonstante bezeichnet, ist als Modellgröße 

zur Beschreibung von Bindungseigenschaften nicht 

unproblematisch. Vor allem deshalb, da ihr nicht 

die Eigenschaft einer physikalischen Observablen 

zukommt, sondern lediglich Modellcharakter. Die 

Diskussion des Absolutwertes sollte daher in diesem 

Licht gesehen werden, d. h. in Abhängigkeit vom an­

gewandten Modell. Trotz dieser Schwierigkeiten ist 

die Kraftkonstante eine interessante Größe, da sie 

sowohl aus experimentellen Daten wie auch aus 

quantenchemischen Rechnungen ableitbar ist. Dies 

erklärt auch die Fülle der darüber bestehenden 

Literatur. Bezüglich der Berechnung aus experi­

mentellen Daten sei auf die Literatur verwiesen [2]. 

Neben Methoden zur Berechnung von Kraftkon­

stanten aus schwingungsspektroskopischen Daten 

wurde eine Reihe von empirischen Formeln zur Ab­

schätzung dieser Größe vorgeschlagen [2, 3]. Diese 

Formeln sind meist auf eine bestimmte Bindung be­

schränkt oder benötigen Daten, wie Elektro­

negativität etc., die selbst nicht genau definiert 

sind. Parallel mit der Entwicklung von quanten­

chemischen Rechenmethoden versuchte man mit

Hilfe dieser Methoden die Kraftkonstante zu be­

rechnen. So wurden bereits frühzeitig Modelle in 

Verbindung mit der HMO und PPP-Methode ent­

wickelt [4, 5]. Inzwischen stehen auch eine Reihe 

von Methoden zur Verfügung teils in Verbindung 

mit semiempirischen wie auch mit ab-initio Be­

rechnung [6 ]. Besonders die Entwicklung der Kraft­

feldmethode scheint vielversprechend [7].

In der vorliegenden Arbeit wird versucht, eine 

Brücke zwischen den einfachen Formeln zur Ab­

schätzung der Kraftkonstante und einer semi­

empirischen Rechnung herzustellen. Da der große 

Aufwand bei ab-initio Rechnungen es unmöglich 

macht eine größere Anzahl von Molekülen einer 

systematischen Reihe zu untersuchen, sei hier ver­

sucht, mit Hilfe der semiempirischen CNDO- 

Methode zu einer Berechnung der Kraftkonstante 

zu kommen. Dabei sollte der Aufwand das Maß 

einer empirischen Formel kaum übersteigen, ledig­

lich Daten aus CNDO-Rechnungen, wie sie bereits 

an fast allen Instituten durchgeführt werden, sollten 

dafür nötig sein.

II. Punktladungsmodell zur Berechnung 
der Yalenzkraftkonstante

Mit Hilfe von einfachen Punktladungsmodellen, 

wie sie Parr et al. [8 ] entwickelten, war man bereits 

imstande, ausgehend vom Virialsatz Potential­

flächen zweiatomiger Moleküle zu berechnen. Die 

Ergebnisse dieser Modelle scheinen fast im Wider­

spruch zur Einfachheit ihrer Ansätze zu stehen.

Die Bestrebung war, ausgehend von der elektro­

statischen Fassung des Hellmann-Feynman-Theo- 

rems, unter Heranziehung von Ergebnissen einer 

semiempirischen LCAO-MO-Methode ein einfaches 

Modell zur Berechnung der Valenzkraftkonstante 

zu entwickeln.

Kräfte, die in irgendeinem System von Atom­

kernen und Elektronen auf einen Atomkern wirken,
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können einzig und allein beschrieben werden durch 

die klassischen elektrostatischen Kräfte, die zwi­

schen seinen Nachbarkernen und seiner ihn um­

gebenden Elektronenhülle wirken. Leider stehen 

einer exakten Berechnung erhebliche Schwierig­

keiten entgegen, es sei hier nur auf die Literatur 

verwiesen [6 ]. Da eine semiempirische LCAO-MO- 

Methode auf keinen Fall für eine exakte Berech­

nung der Kräfte im Sinne des Hellmann-Feynman- 

Theorems herangezogen werden kann, sei dieses 

Theorem lediglich als Ausgangspunkt für ein ein­
faches Modell gewählt.

Unter Berücksichtigung des einfachsten Falles 

eines zweiatomigen Moleküls ist die Kraft, die auf 

den Atomkern A wirkt, durch folgende Beziehung 

bestimmt:

F a = ~
. cos d 

z a jo (r )— g-  dr. (1 )

p(r)

Fig. 1. Koordinatensystem zu Formel (1).

Der erste Term beschreibt die Coulomb-Abstoßung 

zwischen Kern A und B, der zweite die Wechsel­

wirkung zwischen Kern A und die ihn umgebende 

Elektronenhülle.

Die Elektronendichte ^(r) kann in der Hartree- 

Fock-Näherung beschrieben werden durch die 

Summe der Dichten der besetzten Molekül-Orbitale:

(2)

wobei ipi das i-te MO mit der Besetzungszahl 

ist. Im Falle von abgeschlossenen Schalen ist m,- 

gleich 2. In der LCAO-MO-Näherung wird jedes 

MO als eine Linearkombination von Atomorbitalen 

entwickelt:

(3)

Ciß sind die Entwicklungskoeffizienten, die in der 

CNDO-Näherung summiert über alle besetzten MO 

die Dichtematrix PßV ergeben.

Diese Dichtematrixelemente lassen sich einer ein­

fachen Interpretation zuführen: die Diagonalglieder 

beschreiben die „Elektronen am Atom“, die Außer- 

diagonalglieder geben quadriert und aufsummiert

den „Wiberg-Bindungsindex“ IFab , ein Maß für die 

Kovalenz einer Bindung [11].

!Kab =  2 ^ ju an Atom A, (4) 

v an Atom B.

Für eine rein kovalente Einfachbindung erhält man 

W =  1 , eine rein ionische Bindung ergäbe 0.

Multipliziert man diesen Bindungsindex mit 2 so 

kann man die erhaltene Größe als ,,Elektronen­

dichte“ zwischen den Atomen A und B inter­

pretieren. Durch eine einfach geometrische Trans­

formation des Moleküls, nämlich die Bindungs- 

achse AB gleich der z-Achse des kartesischen 

Koordinatensystems, läßt sich eine a — jr-Separie- 

rung vornehmen, der Bindungsindex des o’-Anteils 

ergibt sich aus den Koeffizienten der s- und px- 

Atomfunktionen, der ^-Anteil aus denen der 

Py- und pz-Atomfunktionen.

Wir stellen nun ein einfaches Punktladungs- 

modell der chemischen Bindung zwischen A und B 

auf:

Q a  und Q b seien die Atombruttoladungen. Die 

Elektronendichte der o'-Bindung sei als Punkt­

ladung in der Mitte zwischen A und B, die jr-Dichte 

oberhalb und unterhalb der Bindungsachse lokali­

siert. Kehren wir nun zur Formel (1) zurück und 

versuchen mit Hilfe dieses Modells die Kraft zu be­

rechnen, die auf den Kern A wirkt: Formel (1) 

reduziert sich, da cos (5 =  1 ist und ra=-R/ 2  zu 

folgender einfachen Summe von Coulomb-Termen:

^ I ^ B a b jt Qb \

Z* ist die effektive Kernladung, Kern A abge­

schirmt durch seine Elektronen. Bab ist der neue 
Bindungsindex, vergleichbar mit den spektro­

skopischen Bindungsordnungen, für die Einfach- 

bindung gleich dem Wibergschen Bindungsindex, 

für die Mehrfachbindungen:

_BAb =  Wa + 1/2 p/2 W71 für eine Zw’eifach-
bindung,

Bab =  Wa + 2/3 ]/2 Wn für eine Dreifach­
bindung.

Obige Formel läßt sich durch Einführen der Atom- 

nettoladung =  Qb —%b noch etwras vereinfachen. 
Hierbei macht man unter Annahme der voll­

ständigen Abschirmung des Kerns durch seine ihn 

umgebende Elektronenhülle eine durchaus brauch­

bare Näherung, die mit Ausnahme des Wasserstoff-



atom s höchstens einen Fehler von 10% verursacht. 
Die effektive K ernladung Z * können wir daher 
auch als Differenz der A tom bruttoladung und K ern­
ladung darstellen. Gleichzeitig gehen wir von der 
K raft zur K raftkonstan te  über und erhalten:

{2 Z a — Qa)
/ a b  = ----------^ ----------{SB A B  —  9 b ) .  ( 6 )

Einen Effekt kann diese Formel der Punktladungen 
nich t berücksichtigen: es ist die E lektronendichte 
h in ter dem K ern A. Die sogenannten einsamen 
Elektronenpaare bewirken, daß der Ladungsschwer­
punk t der E lektronendichte nicht m it dem K ernort 
zusammenfällt, es resultiert die sog. A tom dipolkraft
[9]. B etrachtet m an die V alenzkraftkonstante als 
„S teifheit“ der Feder im Federmodell der chemi­
schen Bindung, d .h . m it welchem W iderstand die 
Bindung gegenüber einer Auslenkung reagiert, so 
ist es einsichtig, daß E lektronendichte hinter dem 
K ern diese Auslenkung erleichtert. Dieser Effekt der 
A tom dipolkraft läß t sich als konstan ter Term d ar­
stellen; in Anlehnung an  eine exakte Ableitung [10] 
wird der F aktor (Za — 2)/Za eingeführt. Dies gilt 
natürlich nur für Atome m it einsamen E lektronen­
paaren. Jedoch scheint sich bei anderen Atomen 
dieser Effekt in reziproker Form  auszuwirken, z.B . 
erhält m an die V alenzkraftkonstante für W asser­
stoffbindungen nur dann in der richtigen Größen­
ordnung, wenn m an fü r das W asserstoffatom die 
K ernladung Z  =  2 verwendet .

Als endgültige Form el zur Berechnung der 
V alenzkraftkonstante erhalten wir, wobei A das 
endständige Atom i s t :

Z a  — 2  2 Z a  —  Q a  

/ a b  =  ~ Z a ~  "  *» {SBab  ~  9b) • (7)

Zur Berechnung benötigen wir 4 Größen: die A tom ­
ladungen Qa und Qb , den W ibergschen Bindungs­
index und die Geometrie des Moleküls. Is t diese 
nicht bekannt, sucht m an sich die CNDO-Geo- 
m etrie bzw. m an verwendet S tandardlängen und 
Winkel. Je  nach verwendeten E inheiten kom m t ein 
Fak to r für die Um rechnung der atom aren E inheiten 
hinzu.

III. CNDO-Berechnung der betrachteten Moleküle

Als Rechenmethode wurde das Verfahren nach 
Pople gewählt, jedoch m it mehereren A bänderun­
gen. Dieses Verfahren bietet sich besonders an, da
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es von allen semiempirischen Verfahren die besten 
Ergebnisse in Hinsicht Ladung ergibt, wofür es ja 
eigentlich param etrisiert wurde. Moleküle, die 
Atome der 3. Periode enthalten, werden jedoch 
nicht befriedigend behandelt. Selbst die Rechnung 
des einfachen Cl2 -Moleküls zeigt diese Problem atik, 
erhält m an m it der Original-CNDO/2-Parametri- 
sierung einen Atom abstand von 1,58 Ä, viel zu 
kurz im Vergleich m it dem experimentellen von
1,998 A. Systematische U ntersuchungen von Ver­
bindungen, die Chlor enthalten, zeigten, daß der 
gewählte Orbitalexponent für die d-Funktionen 
einen Kompromiß für die verschiedenen Valenz- 
zustände des Chlor darstellt.

Verzichtet man auf die d-Funktionen, so erhält 
m an für Chlorverbindungen, die das Chlor im 
Valenzzustand — 1 enthalten, äußerst befriedigende 
Ergebnisse. Auch gibt sich im Vergleich m it Cl- 
Quadrupolkopplungskonstanten eine gute Ü berein­
stimmung der Atomladungen. Beim Phosphor 
scheinen ähnliche Probleme vorzuliegen. So ist es 
bei Verzicht auf die d-Funktionen am Phosphor sehr 
wohl möglich, selbst schwierige S trukturproblem e 
wie Abweichung von der L inearität im F 2PCN zu 
berechnen; wir können uns daher einer K ritik  dieser 
Methode in dieser Richtung nicht anschließen [12]. 
F ür Schwefel empfiehlt sich ein d-Orbitalkoeffizient 
von 1,16.

Zur Berechnung der K raftkonstante wurden 
durchwegs die experimentellen Geometrien einge­
setzt, soweit sie bekannt sind, ansonsten die CNDO- 
Minimumsgeometrie. In  Formel (7) wurden als 
K ernladungen die im CNDO-Verfahren verwende­
ten  eingesetzt, d .h . Ordnungszahl minus innere 
Elektronen. Sämtliche Moleküle liegen, bis au f eine 
Ausnahme, im closed-shell-Zustand vor. Diese Aus­
nahme ist das CIN-Radikal, das durch Photolyse 
von C1NNN aus Spinerhaltungsgründen im Singlett- 
Zustand gebildet wird, jedoch unter A bstrahlung 
von Energie in den stabileren T riplett-Zustand 
übergeht. Tatsächlich ergibt die unrestricted CNDO- 
Rechnung einen um 0,013 H  stabileren Triplett- 
Zustand.

Als SCF-Limit wurde 10-6 gewählt. Da sich bei 
einigen Molekülen Schwierigkeiten m it der K on­
vergenz im SCF-Teil ergaben, wurde wahlweise 
diese mit der Saunders level shifting-Prozedur er­
zwungen [13]. Durchgeführt wurden die Rech­
nungen am Rechenzentrum Graz an einer Univac 
494.
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Tabelle 1.

He (Ä) ? A (a .u .) ? ß (a .u .) Wo W* / /  e x p .
(mdyn/Ä) (mdyn/Ä)

CI--N 1,66 c -  0,0174 +  0,0174 0,9838 0,104 3,99 4,00 [20]
C l-- n h 2 1,748 [21] -  0,083 -  0,092 0,998 — 3,16 3,06 [22]
C l-- n c i2 1,759 [23] -  0,035 +  0,106 0,998 — 3,12 3,15 [24]

2,925 [25]
C l--N F 2 1,725 c - 0 ,1 1 2 +  0,313 0,940 — 3,09 3,13 [36]
C l--NFC1 1,740 c -  0,061 +  0,211 0,96 — 3,10 3,189 [37]
C l--NO 1,95 [31] -  0,205 +  0,234 0,769 0,06 1,77 1,45 [32]

2,39 [2]
1,27 [57]

C l- -n o 2 1,83 [34] -  0,077 +  0,559 0,768 0,020 2,04 2,46 [35]
C l--NCO 1,700 +  0,007 -  0,184 0,86 — 3,11 2,835 [28]

[26, 27]
C l--NSO 1,690 [29] +  0,0576 -  0,122 0,81 — 2,98 2,63 [30]
0 = c 1,1282 [38] -  0,042 +  0,042 0,950 1,665 20,35 19,02438 [39]
0 = c = o 1,1615 [38] -  0,268 +  0,536 0,991 0,931 13,38 16,025 [39]
C 032- 1,28 [40] -  0,8083 +  0,4253 0,9536 0,3434 6,54 7,641 [41]
0 = c h 2 1,205 [42] -  0,186 +  0,214 0,989 1,055 12,96 12,72 [43]
0 = c f 2 1,17 [38] -  0,269 +  0,655 0,982 0,935 12,86 12,61 [42]
0 = CC12 1,166 [38] -  0,183 +  0,432 0,980 1,080 14,33 12,54 [42]
0  = C = N —CI 1,147 [26] -  0,225 +  0,430 0,988 0,972 14,34 13,35 [28]

0 = C/ H
^ \ c h 3 1,2155 [40] -  0,234 +  0,251 0,990 0,958 12,14 10,61 [42]

0 = C/ 0 H
° \ H 1,217 [38] -  0,2597 +  0,3778 0,9840 0,9415 11.80 13,671 [44]

0 = c < £ h 3 1,187 [38] -  0,217 +  0,376 0,961 1,030 13,12 11,23 [33]

0  = C/ C N
ü \ C H 3 1,204 [60] -  0,228 +  0,269 0,950 0,966 12,48 10,61 [60]

(N  == C)2 1,157 [40] -  0,139 +  0,139 1,047 1,962 18,80 17,35 [49]
N  = C - H 1,15535 [38] -  0,1004 +  0,0296 0,999 1,995 19,01 18,77 [39]
N  = C - F 1,159 [45] -  0,180 +  0,296 1,000 1,868 17,55 17,55 [45]
N  = C -C l 1,163 [45] -  0,141 +  0,155 0,999 1,920 17,93 18,45 [45]
N  = c - c h 3 1,157 [40] -  0,162 +  0,091 0,999 1,880 17,94 17,73 [49]
N  = c - c h 2- c h 3 1,1566 [40] - 0 ,1 6 1 +  0,082 1,454 1,434 18,19 17,45 [49]
N s c - c h = c h 2 1,163 [40] -  0,154 +  0,088 1,180 1,663 17,54 16,94 [61]
N  = CCCH 1,157 [50] -  0,1348 +  0,1089 1,0000 1,8328 17,74 15,7 [50]
(N == C)2- C H 2 1,158 [40] -  0,150 +  0,099 1,233 1,654 18,06 17,85 [49]

19,146 [48]
(N ==C)3P 1,15 [47] -  0,113 +  0,012 0,997 1,942 18,89 17,853 [47]
(N == C)3A s 1,15 [47] -  0,0476 -  0,0525 0,9901 1,8048 18,28 17,514 [47]
(N i= C)2S 1,157 [46] +  0,0397 +  0,0887 1,1046 1,5101 17,04 16,9 [46]
H 20 0,9584 [38] -  0,2846 +  0,1423 0,980 — 8,56 8,45 [51]
h 3n 1,008 [38] +  0,079 -  0,237 0,993 — 7,20 7,075 [52]
H - -C =  N 1,06317 [38] +  0,078 +  0,0296 0,9771 — 5,81 5,82 [45]
H - -CHO 1,09 [42] -  0,010 +  0,214 0,950 — 4,91 4,4 [2]
H - -C=CC = N 1,057 [50] +  0,0734 -  0,0555 0,9842 6,03 5,86 [50]
H - -C H = C = C H 2 1,086 [53] +  0,1071 -  0,4150 0,8896 — 5,37 5,51 [53]
H - -C <  1, 2 ,4  Triazol 1,078 MW 0,0 +  0,172 0,959 — 5,19 5,34 [55]

[54]
H - - N <  1, 2 ,4  Triazol 0,998 MW +  0,108 -  0,068 0,957 — 7,10 6,78 [55]

° \ 0 H

[54]

H - 1,09 [38] -  0,0394 +  0,3778 0,9403 - 4,69 5,039 [44]

H - _ o _ c / H u  ° \ 0 0,97 [38] +  0,1595 -  0,2384 0,9555 - 8,08 7,697 [44]
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Tabelle 1 (Fortsetzung).

-Re (A) <7a  (a .u .) ? ß ( a .u .) Wa W71 /
(mdyn/A)

/e x p .
(mdyn/A)

H 3As 1,52 [38] - 0 ,1 1 8 7 +  0,3562 0,9858 — 2,67 2,58 [2]
ON+ 1,0619 [38] +  0,3860 +  0,6140 0,988 1,8729 24,01 25,07 [2]
0 —N —0+ 1,100 [38] +  0,1013 +  0,7974 0,9566 0,9946 16,53 17,17 [2]
0 —N —0 - 1,228 [38] -  0,544 +  0,088 0,660 0,813 8,33 8,08 [56]
O - N - C l 1,17 [31] -  0,028 +  0,234 0,850 1,296 14,97 15,26 [57]
o 2n f 1,1798 [38] -  0,2454 +  0,6788 1,5343 — 13,12 13,13 [2]
F - N 0 2 1,467 MW 

[38]
-  0,1881 +  0,6788 0,8129 — 4,80 3,21 [2]

F —C = N 1,262 [45] -  0,115 +  0,296 0,929 0,121 8.30 8,54 [2]
CI—C = N 1,62 [45] -  0,014 +  0,155 0,963 0,073 4,05 4,76 [45]
Cl—F 1,635 [38] +  0,1273 -  0,1273 0,9838 — 4,04 4,36 [2]
C12S 2,0152 [59] +  0,0298 -  0,0595 0,9980 0,546 2,96 2,913 [59]
N - B - N 3 - 1,38 ass -  0,2127 -  0,5746 0,9942 0,9569 8,87 7,2 [45]
0  — B —0 - 1,32 [38] -  0,5407 +  0,0815 0,975 0,8339 10,3 10,3 [45]
0  =  B —H 1,213 c -  0,163 +  0,186 0,9307 1,592 15,37 13,86 [58]

c: CNDO Minimumsgeometrie.

IV. Diskussion der Ergebnisse

Als Beispiele von Reihen ähnlicher Verbindungen 
wurden als Einfachbindung die Chlor-Stickstoff, als 
Doppelbindung die Carbonyl- und als Dreifach­
bindung die Cyanidbindung gewählt. Daneben 
wurden verschiedene andere Bindungen ausgewählt, 
um  die allgemeine Brauchbarkeit des Modells zu 
demonstrieren.

Auf eine spezielle Diskussion der experim entellen 
W erte sei verzichtet. So lassen sich die W erte des 
vorliegenden Modells am  besten m it jenen ver­
gleichen, die aus General Valence Force Field- 
Rechnungen stammen. Differenzen können selbst 
bei Anwendung dieser Methode auftreten, wenn ver­
schiedene Zusatzdaten verwendet wurden. Eine 
bedeutend schlechtere Übereinstimmung ergibt sich 
m it W erten, die aus Urey-Bradley-Rechnungen 
stam m en. Diese, in ihrem W ert fast konstante A b­
weichung sieht man am besten an  H and der 
Carbonylvalenzkraftkonstante der Essigsäurederi­
vate. Mit einem Fragezeichen sind auch jene Ver­
gleiche zu versehen, wo die experimentellen Messun­
gen nicht in der Gasphase, was m it quan ten­
chemischen Rechnungen eher vergleichbar ist, 
sondern am Festkörper durchgeführt wurden.

Es ist trotzdem  überraschend, wie erfolgreich ein 
so einfaches Modell arbeitet. N atürlich m uß ein 
solches Modell auch Schwächen besitzen. Bei der 
Separierung wurde auf die R ücktransform ation der

OAO in die ursprünglichen kanonischen AO ver­
zichtet. E in Fehler der sich hier kaum bem erkbar 
machen dürfte [15, 16]. Das Modell der K ra ft­
konstante als Maß für die Rückholkraft ist n a tü r­
lich nur bei vorwiegend kovalenten Bindungen 
sinnvoll. E in statisches Punktladungsm odell muß 
bei ionischen Bindungen versagen, wo die Polari­
sationen der Ladungen bei Auslenkung bedeutend 
sind [14]. Die weiteren Vereinfachungen, wie 
Bindungselektronen genau in der M itte des Gleich­
gewichtsabstandes, was bei den unterschiedlichen 
kovalenten Radien sicher ein grober Fehler ist, 
weiters die Annahme der to talen  Abschirmung des 
Kernes durch die inneren Elektronen, scheinen von 
untergeordneter Bedeutung. Wahrscheinlich wirken 
im ganzen gesehen mehrere Beiträge in entgegen­
gesetzte R ichtungen und heben sich teilweise auf. 
Besonders sei noch hier au f den Vergleich m it den 
empirischen Regeln eingegangen. Das vorliegende 
Modell erk lärt teilweise, warum überhaupt solche 
empirische Regeln eine Abschätzung der Valenz­
k raftkonstan te  erlauben. Die meisten Regeln gehen 
von der Stellung der beteiligten Atome im Perioden­
system  aus. Sieht m an sich Formel (7) an, so sieht 
man, daß die K ernladungszahl einen dominierenden 
F ak to r darstellt, besonders augenscheinlich im 
Beitrag der A tom dipolkraft. Der Beitrag der 
Bindungsordnung ist in solchen Regeln meist in 
einem empirischen F ak to r verborgen. N atürlich 
lassen solche Regeln keine Diskussionen innerhalb



einer Reihe zu. Nimmt m an den Bindungsabstand 
hinzu, kann man zwar innerhalb einer Reihe 
Unterschiede erklären, dies kann jedoch in einigen 
Fällen auch in die falsche R ichtung tendieren. So 
ist die Cl-N-Bindung im Chlorazid bedeutend 
stärker als im Chlorisocyanat, obwohl sie im ersten 
Fall um 0,042 Ä länger ist. Welche Effekte hier eine 
Rolle spielen, zeigen quantenchemische Rechnungen 
und  die Photoelektronenspektroskopie [17, 18]. 
Durch Hinzunahme von E lektronegativitäten lassen 
sich empirische Regeln weiter verbessern, da sie die 
Atom ladungen teilweise berücksichtigen.
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