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A Semiempirical Formula to Estimate Valence Force Constants

A semiempirical formula to estimate valence force constants is derived. Using CNDO data,
it is possible to get much better results than from empirical rules. The application of a simple
point charge model allows a discussion of chemical binding.

I. Einleitung

Seit alters her ist der Begriff der chemischen
Bindung mit einem gewissen Modell verbunden.
Exakte Betrachtungen der chemischen Bindung [1]
im Sinne der Quantenmechanik sind zu unhandlich
und erlauben keine einfache Interpretation mole-
kularer Phinomene. Strebt man Aussagen beziig-
lich der ,,Starke einer Bindung* an, so mufl man
sich zuerst im klaren sein, worauf man diese Stiarke
bezieht. Ein sehr brauchbares Modell, vor allem im
Zusammenhang mit den schwingungsspektroskopi-
schen Methoden, ist das Federmodell der chemischen
Bindung. Die Vorstellung, die schwingenden Atome
seien durch masselose Federn verbunden, 1af3t eine
Interpretation der Stirke einer Bindung als Steif-
heit dieser Feder zu. Diese Steifheit, meist als Va-
lenzkraftkonstante bezeichnet, ist als Modellgrofie
zur Beschreibung von Bindungseigenschaften nicht
unproblematisch. Vor allem deshalb, da ihr nicht
die Eigenschaft einer physikalischen Observablen
zukommt, sondern lediglich Modellcharakter. Die
Diskussion des Absolutwertes sollte daher in diesem
Licht gesehen werden, d.h. in Abhédngigkeit vom an-
gewandten Modell. Trotz dieser Schwierigkeiten ist
die Kraftkonstante eine interessante Grolle, da sie
sowohl aus experimentellen Daten wie auch aus
quantenchemischen Rechnungen ableitbar ist. Dies
erklart auch die Fiille der dariiber bestehenden
Literatur. Beziiglich der Berechnung aus experi-
mentellen Daten sei auf die Literatur verwiesen [2].
Neben Methoden zur Berechnung von Kraftkon-
stanten aus schwingungsspektroskopischen Daten
wurde eine Reihe von empirischen Formeln zur Ab-
schitzung dieser Grofle vorgeschlagen [2, 3]. Diese
Formeln sind meist auf eine bestimmte Bindung be-
schrinkt oder bendtigen Daten, wie Elektro-
negativitit etc., die selbst nicht genau definiert
sind. Parallel mit der Entwicklung von quanten-
chemischen Rechenmethoden versuchte man mit

Hilfe dieser Methoden die Kraftkonstante zu be-
rechnen. So wurden bereits frithzeitic Modelle in
Verbindung mit der HMO und PPP-Methode ent-
wickelt [4, 5]. Inzwischen stehen auch eine Reihe
von Methoden zur Verfiigung teils in Verbindung
mit semiempirischen wie auch mit ab-initio Be-
rechnung [6]. Besonders die Entwicklung der Kraft-
feldmethode scheint vielversprechend [7].

In der vorliegenden Arbeit wird versucht, eine
Briicke zwischen den einfachen Formeln zur Ab-
schitzung der Kraftkonstante und einer semi-
empirischen Rechnung herzustellen. Da der grofe
Aufwand bei ab-initio Rechnungen es unmoglich
macht eine gréBere Anzahl von Molekiilen einer
systematischen Reihe zu untersuchen, sei hier ver-
sucht, mit Hilfe der semiempirischen CNDO-
Methode zu einer Berechnung der Kraftkonstante
zu kommen. Dabei sollte der Aufwand das Maf
einer empirischen Formel kaum iibersteigen, ledig-
lich Daten aus CNDO-Rechnungen, wie sie bereits
an fast allen Instituten durchgefiithrt werden, sollten
dafiir notig sein.

I1. Punktladungsmodell zur Berechnung
der Valenzkraftkonstante

Mit Hilfe von einfachen Punktladungsmodellen,
wie sie Parr et al. [8] entwickelten, war man bereits
imstande, ausgehend vom Virialsatz Potential-
flichen zweiatomiger Molekiile zu berechnen. Die
Ergebnisse dieser Modelle scheinen fast im Wider-
spruch zur Einfachheit ihrer Ansitze zu stehen.

Die Bestrebung war, ausgehend von der elektro-
statischen Fassung des Hellmann-Feynman-Theo-
rems, unter Heranziehung von Ergebnissen einer
semiempirischen LCAO-MO-Methode ein einfaches
Modell zur Berechnung der Valenzkraftkonstante
zu entwickeln.

Krifte, die in irgendeinem System von Atom-
kernen und Elektronen auf einen Atomkern wirken,
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konnen einzig und allein beschrieben werden durch
die klassischen elektrostatischen Krifte, die zwi-
schen seinen Nachbarkernen und seiner ihn um-
gebenden Elektronenhiille wirken. Leider stehen
einer exakten Berechnung erhebliche Schwierig-
keiten entgegen, es sei hier nur auf die Literatur
verwiesen [6]. Da eine semiempirische LCAO-MO-
Methode auf keinen Fall fiir eine exakte Berech-
nung der Krafte im Sinne des Hellmann-Feynman-
Theorems herangezogen werden kann, sei dieses
Theorem lediglich als Ausgangspunkt fiir ein ein-
faches Modell gewihlt.

Unter Beriicksichtigung des einfachsten Falles
eines zweiatomigen Molekiils ist die Kraft, die auf
den Atomkern A wirkt, durch folgende Beziehung
bestimmt :

ZAaZp cos 0
FA:—jeZ*’—rZAJ‘Q(T) ri dr. (1)

p(x)

AN
. S

Fig. 1. Koordinatensystem zu Formel (1).

Der erste Term beschreibt die Coulomb-AbstoBung
zwischen Kern A und B, der zweite die Wechsel-
wirkung zwischen Kern A und die ihn umgebende
Elektronenhiille.

Die Elektronendichte g(r) kann in der Hartree-
Fock-Néaherung beschrieben werden durch die
Summe der Dichten der besetzten Molekiil-Orbitale :

o(r) =2 miyi(r) pi(r), 2)
t

wobei y; das i-te MO mit der Besetzungszahl m;
ist. Im Falle von abgeschlossenen Schalen ist m;
gleich 2. In der LCAO-MO-Naherung wird jedes
MO als eine Linearkombination von Atomorbitalen
entwickelt :

Y= Z Cin Pu - 3)
"

ciu sind die Entwicklungskoeffizienten, die in der
CNDO-Niherung summiert iiber alle besetzten MO
die Dichtematrix P, ergeben.

Diese Dichtematrixelemente lassen sich einer ein-
fachen Interpretation zufiihren : die Diagonalglieder
beschreiben die ,,Elektronen am Atom*, die Auller-
diagonalglieder geben quadriert und aufsummiert
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den ,,Wiberg-Bindungsindex‘ W g, ein Ma8 fiir die
Kovalenz einer Bindung [11].

Wap=> P;, u an Atom A, (4)
Ha¥ y an Atom B.

Fiir eine rein kovalente Einfachbindung erhilt man
W =1, eine rein ionische Bindung ergibe 0.

Multipliziert man diesen Bindungsindex mit 2 so
kann man die erhaltene GroBe als ,,Elektronen-
dichte” zwischen den Atomen A und B inter-
pretieren. Durch eine einfach geometrische Trans-
formation des Molekiils, ndmlich die Bindungs-
achse AB gleich der z-Achse des kartesischen
Koordinatensystems, 14t sich eine ¢ — m-Separie-
rung vornehmen, der Bindungsindex des ¢-Anteils
ergibt sich aus den Koeffizienten der s- und p,-
Atomfunktionen, der m-Anteil aus denen der
py- und p,-Atomfunktionen.

Wir stellen nun ein einfaches Punktladungs-
modell der chemischen Bindung zwischen A und B
auf:

@4 und @p seien die Atombruttoladungen. Die
Elektronendichte der o-Bindung sei als Punkt-
ladung in der Mitte zwischen A und B, die z-Dichte
oberhalb und unterhalb der Bindungsachse lokali-
siert. Kehren wir nun zur Formel (1) zuriick und
versuchen mit Hilfe dieses Modells die Kraft zu be-
rechnen, die auf den Kern A wirkt: Formel (1)
reduziert sich, da cos 6=1 ist und r,=R/2 zu
folgender einfachen Summe von Coulomb-Termen:

ZiZw 8Bas + @B
o . = E3 Wi .
RS a(E ) e
Z% ist die effektive Kernladung, Kern A abge-
schirmt durch seine Elektronen. Bp ist der neue
Bindungsindex, vergleichbar mit den spektro-
skopischen Bindungsordnungen, fiir die Einfach-
bindung gleich dem Wibergschen Bindungsindex,
fiir die Mehrfachbindungen:
Bag= Wo+41/2)/2 W= fiir eine Zweifach-
bindung,
fiir eine Dreifach-
bindung.

Bap=Wo +23)2 W=

Obige Formel laB3t sich durch Einfiithren der Atom-
nettoladung ¢ =@ — Zg noch etwas vereinfachen.
Hierbei macht man unter Annahme der voll-
standigen Abschirmung des Kerns durch seine ihn
umgebende Elektronenhiille eine durchaus brauch-
bare Naherung, die mit Ausnahme des Wasserstoff-
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atoms hochstens einen Fehler von 109, verursacht.
Die effektive Kernladung Z% konnen wir daher
auch als Differenz der Atombruttoladung und Kern-
ladung darstellen. Gleichzeitig gehen wir von der
Kraft zur Kraftkonstante iiber und erhalten:

275 —
fin =" S LT N—— (6)
Einen Effekt kann diese Formel der Punktladungen
nicht beriicksichtigen: es ist die Elektronendichte
hinter dem Kern A. Die sogenannten einsamen
Elektronenpaare bewirken, dafl der Ladungsschwer-
punkt der Elektronendichte nicht mit dem Kernort
zusammenfillt, es resultiert die sog. Atomdipolkraft
[9]. Betrachtet man die Valenzkraftkonstante als
,,Steifheit’* der Feder im Federmodell der chemi-
schen Bindung, d.h. mit welchem Widerstand die
Bindung gegeniiber einer Auslenkung reagiert, so
ist es einsichtig, dal} Elektronendichte hinter dem
Kern diese Auslenkung erleichtert. Dieser Effekt der
Atomdipolkraft 1408t sich als konstanter Term dar-
stellen; in Anlehnung an eine exakte Ableitung [10]
wird der Faktor (Zs—2)/Z4 eingefiihrt. Dies gilt
natiirlich nur fiir Atome mit einsamen Elektronen-
paaren. Jedoch scheint sich bei anderen Atomen
dieser Effekt in reziproker Form auszuwirken, z.B.
erhdlt man die Valenzkraftkonstante fiir Wasser-
stoffbindungen nur dann in der richtigen Gréfen-
ordnung, wenn man fiir das Wasserstoffatom die
Kernladung Z =2 verwendet.
Als endgiiltige Formel zur Berechnung der
Valenzkraftkonstante erhalten wir, wobei A das
endstandige Atom ist:

Za—2 2Zx—Qa

faB= Za ps (8Bap—gm). (7)

Zur Berechnung benétigen wir 4 GroBen: die Atom-
ladungen @4 und @g, den Wibergschen Bindungs-
index und die Geometrie des Molekiils. Ist diese
nicht bekannt, sucht man sich die CNDO-Geo-
metrie bzw. man verwendet Standardlingen und
Winkel. Je nach verwendeten Einheiten kommt ein
Faktor fiir die Umrechnung der atomaren Einheiten
hinzu.

III. CNDO-Berechnung der betrachteten Molekiile

Als Rechenmethode wurde das Verfahren nach
Pople gewihlt, jedoch mit mehereren Abanderun-
gen. Dieses Verfahren bietet sich besonders an, da
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es von allen semiempirischen Verfahren die besten
Ergebnisse in Hinsicht Ladung ergibt, wofir es ja
eigentlich parametrisiert wurde. Molekiile, die
Atome der 3. Periode enthalten, werden jedoch
nicht befriedigend behandelt. Selbst die Rechnung
des einfachen Cls-Molekiils zeigt diese Problematik,
erhdlt man mit der Original-CNDO/2-Parametri-
sierung einen Atomabstand von 1,58 A, viel zu
kurz im Vergleich mit dem experimentellen von
1,998 A. Systematische Untersuchungen von Ver-
bindungen, die Chlor enthalten, zeigten, dal} der
gewihlte Orbitalexponent fiir die d-Funktionen
einen Kompromif3 fiir die verschiedenen Valenz-
zustédnde des Chlor darstellt.

Verzichtet man auf die d-Funktionen, so erhilt
man fiir Chlorverbindungen, die das Chlor im
Valenzzustand — 1 enthalten, duBlerst befriedigende
Ergebnisse. Auch gibt sich im Vergleich mit Cl-
Quadrupolkopplungskonstanten eine gute Uberein-
stimmung der Atomladungen. Beim Phosphor
scheinen dhnliche Probleme vorzuliegen. So ist es
bei Verzicht auf die d-Funktionen am Phosphor sehr
wohl moglich, selbst schwierige Strukturprobleme
wie Abweichung von der Linearitit im FoPCN zu
berechnen; wir kénnen uns daher einer Kritik dieser
Methode in dieser Richtung nicht anschlieen [12].
Fiir Schwefel empfiehlt sich ein d-Orbitalkoeffizient
von 1,16.

Zur Berechnung der Kraftkonstante wurden
durchwegs die experimentellen Geometrien einge-
setzt, soweit sie bekannt sind, ansonsten die CNDO-
Minimumsgeometrie. In Formel (7) wurden als
Kernladungen die im CNDO-Verfahren verwende-
ten eingesetzt, d.h. Ordnungszahl minus innere
Elektronen. Samtliche Molekiile liegen, bis auf eine
Ausnahme, im closed-shell-Zustand vor. Diese Aus-
nahme ist das CIN-Radikal, das durch Photolyse
von CINNN aus Spinerhaltungsgriinden im Singlett-
Zustand gebildet wird, jedoch unter Abstrahlung
von Energie in den stabileren Triplett-Zustand
itbergeht. Tatsdchlich ergibt die unrestricted CNDO-
Rechnung einen um 0,013 H stabileren Triplett-
Zustand.

Als SCF-Limit wurde 10-6 gewahlt. Da sich bei
einigen Molekiilen Schwierigkeiten mit der Kon-
vergenz im SCF-Teil ergaben, wurde wahlweise
diese mit der Saunders level shifting-Prozedur er-
zwungen [13]. Durchgefiihrt wurden die Rech-
nungen am Rechenzentrum Graz an einer Univac
494.
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Tabelle 1.
R. (A) qa(a.u.) gs(a.u.) We W= f f exp.
(mdyn/A)  (mdyn/A)
Cl—N 1,66 ¢ —0,0174 40,0174  0,9838 0,104 3,99 4,00 [20]
Cl—NH, 1,748 [21] — 0,083  —0,092 0998 o 3,16 3,06 [22]
Cl—NCl; 1,759 (23] —0,035  +0,106 0,998 — 3,12 3,15 [24]
2,925 [25]
Cl—NF, 1,725 ¢ — 0,112 +0313 0,940 — 3,09 3.13 [36]
Cl—NFCI 1,740 ¢ — 0,061 0211 096 — 3,10 3,189 [37]
C1—NO 19531  —0205  +0234 0,769 0,06 1,77 1,45 [32]
2,39 [2]
1,27 [57]
C1—NOs 183[34] —0077  +0559 0,768 0,020 2,04 2,46 [35]
C1—NCO 1700 4£0,007  —0,84 0,86 — 3,11 2,835 [28]
C1—NSO [1,6é0 []29] 40,0576 —0,122 081 - 2,08 2,63 [30]
0—C 1,1282 [38] — 0,042  +0042 0,950 1,665 20,35 19,02438 [39]
0—=C=0 1,1615[38] — 0,268 -+ 0536 0,991 0,931 13,38 16,025 [39]
CO32- 1,28 [40]  —0,8083  + 04253  0,9536 0,3434 6,54 7,641 [41]
0—CHs 1,205 [42] — 0,186  + 0214 0,089 1,055 12,96 12,72 [43]
0—=CFs 117[38] — 0260  +0655 0,082 0,935 12,86 12,61 [42]
0—CCl, 1,166 [38] — 0,83  +0432 0,080 1,080 14,33 12,54 [42]
0=C—=N—Cl 1,147[26] —0225  +0430 0,988 0,972 14,34 13,35 [28]
O=C<gH3 12155 [40] —0234  +0251 0,990 0,958 12,14 10,61 [42]
o=c(H 1217[38] — 02597  + 03778  0,9840 0,9415 11,80 13,671 [44]
0:0(8‘1{3 1,187 [38] — 0217  +0376 0,961 1,030 13,12 11,23 [33]
0=C<8i\{3 1,204[60] — 0228 0269 0,950 0,966 12,48 10,61 [60]
(N=0)s 1,157 [40] — 04139  + 0139 1,047 1,962 18,80 17,35 [49]
N=C—H 1,15535 [38] — 0,1004  + 0,0296 0,999 1,995 19,01 18,77 [39]
N=C—F 1,159 [45] — 0,80  + 0296 1,000 1,868 17,55 17,55 [45]
N=C—Cl 1,163 [45] — 0,441  +0155 0,999 1,920 17,93 18,45 [45]
N=C—CHj 1,157 [40] — 0,162  +0091 0,999 1,880 17,04 17,73 [49]
N=C—CHs—CHs  1,1566 [40] — 0,161  + 0082 1,454 1,434 18,19 17,45 [49)]
N=C—CH=CH> 1,163 [40] — 0,154  +0088 1,180 1,663 17,54 16,94 [61]
N=CCCH 1,157 [50] —0,1348  +0,1089  1,0000 1,8328 17,74 15,7 [50]
(N=C)e—CH, 1,158 [40] —0,450  +0,099 1,233 1,654 18,06 17,85 [49]
19,146 [48]
(N=0)sP 1,15 [47]  — 0413  +0012 0,997 1,942 18,89 17.853 [47]
(N=C)sAs 115 [47]  —0,0476  —0,0525  0,9901 1,8048 18,28 17,514 [47]
(N=C)oS 1,157 [46]  +0,0397 -+ 0,0887  1,1046 1,5101 17,04 16,9 [46]
Hs0 0,9584 [38] — 0,2846 - 0,1423 0,980 — 8,56 8,45 [51]
HsN 1,008[38] 0,079  —0237 0,93 - 7,20 7,075 [52]
H—C=N 1,06317 [38] + 0,078 -+ 0,029 09771 — 5,81 5,82 [45]
H—CHO 1,09[42] —0010  +0214 0950 - 4,91 4,4[2]
H—C=CC=N 1,057 [50] 00734 — 00555 09842 6,03 5,86 [50]
H—CH—=C—CH 1,086 [53] -+ 0,071  — 04150  0,8896 — 5,37 5,51 [53]
H—C< 1,2,4 Triazol 1,078 MW 0,0 +0172 0,959 - 5,19 5,34 [55]
54
H—N< 1,2, 4 Triazol %,92)8 MW 0,108  —0,068 0,957 — 7,10 6,78 [55]
[54]
H-0{ Oy 1,00[38]  —0,0394 + 03778  0,0403 - 4,69 5,039 [44]
H—-0—C{§ 0,07 [38]  +0,1595 —0.23%4  0,9555 - 8,08 7,697 [44]
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Tabelle 1 (Fortsetzung).
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Re (A) qa(a.u.) gB(a.u.) Wo W= f f exp.
(mdyn/A)  (mdyn/A)
HsAs 1,52 [38] — 0,1187 -+ 0,3562 0,9858 — 2,67 2,58 [2]
ON+ 1,0619 [38] <+ 0,3860 -+ 0,6140 0,988 1,8729 24,01 25,07 (2]
O—N—-O+ 1,100 [38] + 0,1013 -+ 0,7974 0,9566 0,9946 16,53 17,17 [2]
O—N—-O- 1,228 [38] — 0,544 -+ 0,088 0,660 0,813 8,33 8,08 [56]
O0—N-—-Cl 1,17 [31] — 0,028 -+ 0,234 0,850 1,296 14,97 15,26 [57]
02NF 1,1798 [38] — 0,2454 -+ 0,6788 1,5343 — 13,12 13,13 [2]
F—NO> 1,467 MW  — 0,1881 -+ 0,6788 0,8129 — 4,80 3,21 [2]
38
F—C=N [1,2¢]32 45] — 0,115 10296 0,929 0,121 8.30 8,54 [2]
Cl—-C=N 1,62 [45] — 0,014 -+ 0,155 0,963 0,073 4,05 4,76 [45]
Cl—F 1,635 [38] -+ 0,1273 — 0,1273 0,9838 — 4,04 4,36 [2]
CleS 2,0152 [59] -+ 0,0298  —0,0595  0,9980 0,546 2,96 2,913 [59]
N—B—N3- 1,38 ass — 0,2127 — 0,5746 0,9942 0,9569 8,87 7,2 [45]
0—B—-0- 1,32 [38] — 0,5407 -+ 0,0815 0,975 0,8339 10,3 10,3 [45]
O=B—H 1,213 ¢ — 0,163 -+ 0,186 0,9307 1,592 15,37 13,86 [58]

¢: CNDO Minimumsgeometrie.

IV. Diskussion der Ergebnisse

Als Beispiele von Reihen dhnlicher Verbindungen
wurden als Einfachbindung die Chlor-Stickstoff, als
Doppelbindung die Carbonyl- und als Dreifach-
bindung die Cyanidbindung gewéahlt. Daneben
wurden verschiedene andere Bindungen ausgewihlt,
um die allgemeine Brauchbarkeit des Modells zu
demonstrieren.

Auf eine spezielle Diskussion der experimentellen
Werte sei verzichtet. So lassen sich die Werte des
vorliegenden Modells am besten mit jenen ver-
gleichen, die aus General Valence Force Field-
Rechnungen stammen. Differenzen koénnen selbst
bei Anwendung dieser Methode auftreten, wenn ver-
schiedene Zusatzdaten verwendet wurden. Eine
bedeutend schlechtere Ubereinstimmung ergibt sich
mit Werten, die aus Urey-Bradley-Rechnungen
stammen. Diese, in ihrem Wert fast konstante Ab-
weichung sieht man am besten an Hand der
Carbonylvalenzkraftkonstante der Essigsdurederi-
vate. Mit einem Fragezeichen sind auch jene Ver-
gleiche zu versehen, wo die experimentellen Messun-
gen nicht in der Gasphase, was mit quanten-
chemischen Rechnungen eher vergleichbar ist,
sondern am Festkorper durchgefiithrt wurden.

Es ist trotzdem iiberraschend, wie erfolgreich ein
so einfaches Modell arbeitet. Natiirlich muf} ein
solches Modell auch Schwichen besitzen. Bei der
Separierung wurde auf die Riicktransformation der

OAO in die urspriinglichen kanonischen AO ver-
zichtet. Ein Fehler der sich hier kaum bemerkbar
machen diirfte [15, 16]. Das Modell der Kraft-
konstante als MaB fiir die Riickholkraft ist natiir-
lich nur bei vorwiegend kovalenten Bindungen
sinnvoll. Ein statisches Punktladungsmodell muf}
bei ionischen Bindungen versagen, wo die Polari-
sationen der Ladungen bei Auslenkung bedeutend
sind [14]. Die weiteren Vereinfachungen, wie
Bindungselektronen genau in der Mitte des Gleich-
gewichtsabstandes, was bei den unterschiedlichen
kovalenten Radien sicher ein grober Fehler ist,
weiters die Annahme der totalen Abschirmung des
Kernes durch die inneren Elektronen, scheinen von
untergeordneter Bedeutung. Wahrscheinlich wirken
im ganzen gesehen mehrere Beitrige in entgegen-
gesetzte Richtungen und heben sich teilweise auf.
Besonders sei noch hier auf den Vergleich mit den
empirischen Regeln eingegangen. Das vorliegende
Modell erklirt teilweise, warum iiberhaupt solche
empirische Regeln eine Abschitzung der Valenz-
kraftkonstante erlauben. Die meisten Regeln gehen
von der Stellung der beteiligten Atome im Perioden-
system aus. Sieht man sich Formel (7) an, so sieht
man, dafl die Kernladungszahl einen dominierenden
Faktor darstellt, besonders augenscheinlich im
Beitrag der Atomdipolkraft. Der Beitrag der
Bindungsordnung ist in solchen Regeln meist in
einem empirischen Faktor verborgen. Natiirlich
lassen solche Regeln keine Diskussionen innerhalb



einer Reihe zu. Nimmt man den Bindungsabstand
hinzu, kann man zwar innerhalb einer Reihe
Unterschiede erkliren, dies kann jedoch in einigen
Féllen auch in die falsche Richtung tendieren. So
ist die Cl-N-Bindung im Chlorazid bedeutend
stiarker als im Chlorisocyanat, obwohl sie im ersten
Fall um 0,042 A linger ist. Welche Effekte hier eine
Rolle spielen, zeigen quantenchemische Rechnungen
und die Photoelektronenspektroskopie [17, 18].
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